
Clean Air COMPASS DMS – System Design Plan

1.​ Project Overview

The Community of Practice for Air Quality Systems (COMPASS) is developing an open‑source,
customizable data management system (DMS) for air quality measurement data (Table 1). The
COMPASS DMS is being developed to meet global needs for accessible, transparent, and collaborative
systems, emphasizing community-informed development and collective learning. By leveraging
open‑source practices, Clean Air COMPASS seeks to accelerate and scale effective data management
worldwide, overcoming inefficiencies and redundancy in proprietary or ad‑hoc systems.

Table 1. Summary of the project including website, description, stakeholders, assumptions
and key use cases.

Item Details

Project Name
Community of Practice for Air Quality Systems

Data Management System (COMPASS DMS)

Project Website https://cleanaircompass.org

Website to access system Coming soon

Project Description End-to-end platform to ingest, standardize, calibrate, quality-control,
store, and publish environmental observations with dashboards and admin
tools. The COMPASS DMS will be open-source and available to download,

modify, and self-host.

Stakeholders City/State/National Governments, non-profits and community-based
organizations, non-governmental organizations, universities

Intended Users Air quality program managers, measurements/monitoring personnel, data
scientists, QA analysts, public data consumers, IT/Ops

Assumptions

Self-hosted by end-user organizations; Install-anywhere (single VM,
on-prem, or cloud VM); no proprietary/cloud-native dependencies; data

volume moderate to high (10^6–10^9 observations/year); users prefer
low-code/human-readable

Use Cases
Scheduled ingestion from sensors/APIs; schema validation; QC rules;

normalization; time-series storage; REST access; dashboards; admin CRUD;
notifications; auditing and lineage

1.1 Development in Phases

COMPASS DMS will be developed in phases to deliver value early and grow over time. The initial
phase, represented by this plan, will focus on building the Minimum Viable Product (MVP). The MVP
will establish the core architecture and implement essential features required to demonstrate system
functionality, including data ingestion, standardization, storage, and a basic user interface for access
and visualization. As part of the MVP, we will focus on the basics: getting the data pipeline up and
running, making sure the data is standardized and stored properly, and giving users a simple interface to

explore their data and manage the system. The MVP will be an open-source COMPASS DMS and
source code that is freely available for end-user organizations to download, modify, and self-host. A
centralized system that is hosted and maintained by COMPASS may be offered in the future.

Later phases will expand on this foundation by adding more advanced features, such as richer
visualization tools, integrations with external systems, and automated notifications. Because the system
is open source, we also plan to open the door for community contributions in future phases. This will
allow developers and stakeholders outside the core COMPASS team to add new data connectors,
visualization modules, or other tools that meet local needs, helping the system evolve faster and stay
relevant to a wider set of users.

This phased approach will allow stakeholders to validate the MVP design, provide feedback, and
prioritize enhancements before subsequent phases expand functionality, integrate additional modules,
and improve scalability, performance, and user experience.

1.2 Stakeholder Workshops

This design plan was developed by analyzing priorities gathered during stakeholder workshops led by
core COMPASS organizations: Clean Air Asia, Allin Wayra, YGPE, SciCAN, and ECI. The highest-priority
requirements shaped the overall system architecture and selection of the technology stack. Key
priorities identified include:

●​ Data/system sovereignty for end user organizations (no requirements to share data though
some workshops identified public data distribution as critical)

●​ Long term sustainability including a cost-effective architecture and easy installation and
maintenance for capacity constrained organizations

●​ Real-time and historical data ingestion from disparate sources and types (files, API)

●​ Data harmonization with standardized protocols

●​ Data QA/QC, anomaly detection, and statistical analysis

●​ Data storage tiers: raw, validated, aggregated, time-series optimized

●​ Visualization: dashboards, maps, charts, narratives, multilingual interfaces, data downloads

●​ Decision/action guidance, forecasting, health messaging, and public alerts

●​ APIs for integration and bulk download

●​ Data attribution and sharing agreements

●​ User-friendly admin interfaces, role-based access control

●​ Hosting flexibility (on-premises, hybrid, modular)

●​ System/data backups and redundancy

The architecture outlined in this document for the MVP directly addresses these requirements by
ensuring reliable ingestion, robust QC, flexible storage, accessible APIs, multilingual and actionable
visualizations, and long-term sustainability.

1.2 Stakeholder Priority Mapping

Table 2 maps each stakeholder group to their top-priority requirements identified during the
workshops. This traceability ensures the design plan remains aligned with the needs of all parties. A
summary of all requirements identified during the workshops is provided in Appendix A.

Table 2. Summary of stakeholder priority requirements.

Stakeholder
Group

Top Priorities

Clean Air Asia Decision/action guidance based on air quality; Multi-source, real-time data
ingestion; Statistical analysis (diurnal/weekly profiles, source ID); Visualization:
charts, maps, narratives; Data download & forecasting; Impact assessment of
policies/actions

Allin Wayra Multi-source, real-time data ingestion; Dashboards/maps (real-time + historical);
QA/QC & anomaly detection; Data storage (raw, validated, aggregated, time-series
optimized); API for bulk download & integration; Machine learning predictions &
event detection; Backups/preservation, modular hosting

YGPE Tiered data storage & access; Dashboards/maps (real-time + historical);
Visualization (charts, maps, narratives); Multilingual/localized interface; Health
messaging (e.g., AQI-based); Role-based access control, data sharing agreements;
Long-term sustainability, local ownership

SciCAN Data sovereignty & attribution; Multi-source, real-time data ingestion; Data integrity
& timeliness; QA/QC & anomaly detection; Dashboards/maps & visualization;
Real-time public alerts & health messaging; PII protection in data/maps

ECI Multi-source, real-time data ingestion; Data storage (raw, validated, aggregated,
time-series optimized); Cost-effective solution; Simpler/easier formats &
user-friendly interface; Visualization & dashboards; Data sharing agreements &
sovereignty; Automated data screening, website/mobile apps

1.2 What is in this Document

This document provides a practical system design outline for an air quality DMS built entirely from
open-source, install-anywhere components.

2.​ Requirements

2.1 Functional Requirements

Table 3 summarizes the non-functional requirements of the system.

Table 3. Summary of priority functional requirements.

General MVP Requirement Future Phase Expansion

Raw data ingest from file drops and
third-party API

Support for CSV (1 format) and up
to three third-party API

Additional formats (CSV,
Excel, JSON, etc.) and
third-party API

Standardize data formats, naming
conventions, units, and time zones

Standardize to Air Quality Data
Exchange (AQDx) format for csv;
prioritizing criteria pollutants (not
VOC, meteorology)

Support for AQDx JSON
format; support for additional
standardization frameworks

Apply schema validation and QC
tests with human-readable specs

Framework for QC tests; support
for basic QC tests (e.g., min/max
threshold); specific QC/calibration
routines for up to three sensors

Additional types of tests and
custom routines

Quarantine failures with logging Quarantine failures Log failures and trigger alerts

Compute derived metrics (AQI) Framework for AQI calculations;
Up to three custom calculations
(U.S. EPA AQI + two additional)

Additional AQI or similar
calculations

Persist raw and curated data into a
data lake

CSV files Parquet, compression,
retention policies

Persist curated data as structured
observations in a database
(time-series optimized)

Store processed data; calculate
aggregates

Additional aggregates (e.g.,
rolling averages), retention
policies

Expose REST API over database Core endpoints (query data, user,
and system information)

Optimized queries for
advanced analyses and
visualizations

Provide visualization interface Basic dashboard with map, time
series, QC displays, data
downloads

Customizable plots and
advanced displays; data QC
from the dashboard

Multilingual/localized interface Framework for supporting different
languages; up to 2 specific
languages in MVP (English + one
additional)*

Custom interfaces for
additional languages; custom
logos and branding

Provide system admin functions Web based UI for configuring
stations/sensors/parameters/users

Additional CRUD for e.g.,
RBAC**, QC tests, system
configurations

Track data lineage, logs Log basic qc results Log manual data qc, user
access, notifications sent;
Access to logs via API and
interface

General MVP Requirement Future Phase Expansion

Notifications Email alerts for administrators Alerts by user-groups for qc
results, concentration
thresholds, Public sign-up for
notifications

Minimal-configuration setup for
multiple operating systems

One OS optimized for MVP Support for additional OS

*Language support for the MVP will rely on translation tools and may be limited to certain typographic
conventions.

**RBAC = Role Based Access Control (specific permissions are assigned to specific users or user groups
such as read-only, data validator, system administrator, etc.)

2.2​Non-Functional Requirements

Table 4 summarizes the non-functional requirements of the system to be developed as part of future
phase expansion. These requirements may not be developed/evaluated unless a centralized COMPASS
DMS is offered.

Table 4. Summary of non-functional system requirements for future phases (not MVP).

Category Target / SLO

Performance API p50 ≤ 200 ms; p95 ≤ 800 ms

Throughput ≥ 50k obs/min sustained

Availability 99.5% (single-node) / 99.9% (HA)

Security OIDC SSO, TLS in transit, RLS at DB

Scalability Scale vertically; shard by station/time

Maintainability Single-file Compose; pin images

Observability Metrics, logs, traces

Portability Runs on Linux/Windows

3.​ System Architecture

In addition to the functional and non-functional requirements, several additional criteria were used to
inform the design of the system architecture and selection of technology for each component. The
criteria include: 1) reliance on open-source technology/software only; 2) flexibility for future versions
(e.g., on-premises vs. cloud hosting, compatibility with diverse operating systems); and 3) simplicity,
prioritizing a cohesive technology stack built around a small number of programming languages and
frameworks.

3.1 High-Level Diagram

The DMS architecture (Figure 1) is designed to reliably manage and deliver environmental data in a
structured and reliable way. Incoming data sources may include files such as CSV or Excel files, JSON
feeds, and external APIs. These inputs flow into the data pipeline, which is responsible for acquisition,
standardization and harmonization of formats and units, quality assurance and quality control (QA/QC),
and data aggregation. Once processed, the data is stored in two layers: a file system for raw and
reference data, and a relational database for structured and query-ready data. From storage, the
system exposes data through an API, which provides controlled and consistent access for both internal
components and external users. On top of this, a user-facing front end offers visualization and analysis
tools, including interactive dashboards with maps, time series plots, statistical summaries, and options
for downloading datasets.

Figure 1. High-level diagram of system architecture.

3.2 Technology Stack

The system uses no cloud-native dependencies, ensuring maximum deployment flexibility (Table 5). It
will rely on a Python-based backend for data processing and API services (ETL, QA/QC), a PostgreSQL
database with PostGIS extensions for structured and spatial data, and a data lake for raw and processed
datasets in CSV format. A FastAPI service will expose the data and analytics through a documented
RESTful API. The user-facing application will be built with TypeScript using React and Next.js, providing
interactive dashboards, maps, and tools for data exploration and download. Containerization via
Docker Compose ensures portability.

This architecture leverages a modern, open-source technology stack. Together, these components
provide a robust foundation for scalable, transparent, and user-friendly environmental data
management and visualization. Alternative technology is further discussed in Appendix B.

Table 5. Summary of MVP technology by system component.

Component Technology
Ingestion Python scripts/services (scheduled jobs)
Validation/Standardization Python + Pandas + Pydantic (schema enforcement,

unit normalization)
Quality Control Python + custom QC rules (statistical/anomaly

detection, QA/QC flags)
Data Lake File system or object store with CSV
Relational DB PostgreSQL + PostGIS
API FastAPI (full REST layer, OpenAPI/Swagger docs)
Frontend (Dashboards,
Maps, Admin)

React + Next.js (TypeScript)

Alerts SMTP via Python
Packaging/Deploy Docker Compose

3.3 Mapping Stakeholder Priorities to Default Stack Components

Table 6 links the stakeholder-identified priorities to the default open-source stack components chosen
for the system. It demonstrates how the architecture addresses stakeholder needs with concrete
technologies.

Table 6. Summary of MVP technology by system component.

Stakeholder Priority Mapped Component(s) Rationale

Multi-source, real-time data
ingestion

Python ingestion services
(scheduled/async)

Flexible ingestion of files, APIs, or
streaming inputs with logging and
lineage tracking

QA/QC & anomaly detection
Pandas + Pydantic + custom Python
QC routines

Schema validation, unit checks, and
anomaly detection in a single Python
codebase

Data storage (raw, validated,
aggregated, time-series
optimized)

CSV (raw + curated) +
PostgreSQL/PostGIS (structured,
indexed)

Clean separation of raw vs. structured
data, with optimized queries for
analytics and spatial data

Visualization: dashboards,
maps, charts, narratives

React + Next.js (TypeScript)
Interactive, modern web application
with rich mapping and visualization
capabilities

Decision/action guidance,
health messaging, public alerts

React dashboards + FastAPI custom
endpoints

Threshold-based visuals, notifications,
and integration-ready endpoints

Stakeholder Priority Mapped Component(s) Rationale

Data download & API
integration

FastAPI
Full-featured REST API with bulk
download endpoints and Swagger
docs

Role-based access control /
tiered access

Postgres RLS
Row-level security in Postgres with
optional identity management

Data sovereignty, attribution,
ownership

Metadata tracking and chain of
custody in the application

Transparent lineage, reproducible
schemas, traceability of data origin

Hosting flexibility
(on-premises, hybrid,
modular)

Docker Compose
Portable, modular deployments across
environments

Backups, preservation,
sustainability

pgBackRest + file versioning
Automated backups and versioning for
redundancy and long-term
sustainability

4.​ Module Design

The system is organized into modular components, each responsible for a specific set of functions
within the data pipeline, storage, API, and frontend layers. Table 7 summarizes each module’s purpose,
inputs, outputs, and key dependencies, providing a clear view of how data flows from acquisition to
user-facing applications. This modular design promotes maintainability, scalability, and flexibility,
enabling components to evolve independently as the system grows.

Table 7. Details (inputs, outputs, dependencies) for each MVP module.

Module Purpose Inputs Outputs Dependencies

Ingestion Flow
(Python)

Pulls data from sources on
schedules; records
provenance; writes raw
CSV to data lake; triggers
validation/QC

Source
URLs/paths,
polling intervals,
credentials

Raw files (CSV) in data
lake; provenance
metadata

External APIs, file
shares

Validator
(Python/Pydantic)

Enforces schemas, field
types, required constraints;
produces validation report;
flags bad records

Dataset
(CSV/JSON),
schema
definition

Validation report
(JSON), pass/fail
outcome

Schema repo (Git)

QC Runner (Python)

Applies statistical and
threshold-based QC
checks; annotates qc_flag
and qc_detail fields

Validated
dataset

QC’d dataset with flags
and metadata

Validator output

Module Purpose Inputs Outputs Dependencies

Transformer
(Python/Pandas)

Performs unit
normalization, timezone
standardization, derived
fields; writes CSV; inserts
into Postgres

QC’d dataset
Curated files in data
lake; inserts to
Postgres/PostGIS

Postgres, data lake

API Layer (FastAPI)

Provides REST endpoints
(data retrieval, aggregation,
metadata, downloads);
includes OpenAPI docs

HTTP requests JSON/CSV responses Postgres, data lake

Frontend (React +
Next.js)

Delivers dashboards,
maps, time series, admin
console, and download
interface

API endpoints
Interactive web app
(visualizations, data
access)

FastAPI

5.​ Risks & Mitigations

The MVP system faces potential risks related to data quality, performance, reliability, and security (Table
8). The mitigation strategies listed in the table, ranging from schema validation and partitioning to
backups, access controls, and monitoring, ensure that these risks are managed proactively, helping
maintain data integrity, availability, and secure operation. In future versions of the system, risk
mitigation will be enhanced through both technical and operational improvements. For example,
schema validation and QC rules will evolve to cover additional data sources and edge cases, while
automated monitoring and alerting will be extended to detect anomalies more proactively.
High-availability and failover capabilities for PostgreSQL/PostGIS and the data lake will be implemented
to reduce downtime and read replicas or sharding strategies may be introduced to handle increased
analytical loads. Security controls, including role-based access, encryption, and audit logging, will be
continuously reviewed and updated to align with best practices. These ongoing improvements will
ensure that the system remains robust, scalable, and secure as data volumes and user requirements
grow.

Table 8. Details (inputs, outputs, dependencies) for each module.

Risk Impact Mitigation
Schema drift from partners Load failures or silent data

quality issues
Strict schema validation;
quarantine; partner contracts;
versioned schemas

QC rule complexity False positives/negatives Iterate with data docs; pilot
thresholds; per-parameter
overrides

Single-node failure Downtime/data loss Automated backups; consider
HA for Postgres (future phase)

Unbounded growth Storage/performance
degradation

Partitioning + retention; tiering;
aggregate rollups

Risk Impact Mitigation
Security misconfig Data exposure OIDC + RLS; regular audits;

secrets management; TLS
everywhere (future phase)

6.​ Next Steps

While this document establishes the high-level architecture and technology stack for the system,
several design elements will be developed in greater detail in future iterations of the design plan and
system documentation. These additions will ensure that the implementation is guided by precise
specifications and that the system is prepared for secure, scalable, and sustainable operation.

Additional design details will include the following:

●​ Entity-Relationship (ER) Model and Database Schema – A data model for PostgreSQL/PostGIS,
including entity relationships, indexing strategies, and geospatial structures.

●​ API Design – API specification with documented endpoints, input/output formats,
authentication methods, and error handling conventions.

●​ Security Design – Access control strategy, role-based permissions, and data encryption
considerations.

●​ Deployment Architecture Topologies – Alternative deployment diagrams (e.g., on-premises,
hybrid, or cloud) with guidance on scaling, redundancy, monitoring, and backups.

●​ Test plan - Testing will be mult-tiered (e.g., unit tests, integration tests) and include engagement
with COMPASS organizations as beta testers.

These details will be fully documented in future iterations of this plan, providing the necessary technical
depth to guide development, integration, and operations across different hosting environments.

Appendix A – Workshop Feedback Requirements Summary

Lead Organization Feature/Function Normalized Requirement

Clean Air Asia
Data explainers to ensure ease of understanding the
numbers Clear decision/action guidance based on air quality

Clean Air Asia
Ease of consolidating air quality from various
sources/instruments Data ingestion (multi-source, real-time, protocols)

Clean Air Asia Identification of sources of air pollution Statistical analysis (diurnal/weekly profiles, source
identification)

Clean Air Asia Clear guidance on decisions/actions based on air
quality Clear decision/action guidance based on air quality

Clean Air Asia Time series of the data
Data visualization (charts, maps, story maps,
narratives)

Clean Air Asia Short-term actions based on air quality conditions Clear decision/action guidance based on air quality

Clean Air Asia Ability to integrate meteorological data to air quality
Statistical analysis (diurnal/weekly profiles, source
identification)

Clean Air Asia Data download Data download

Clean Air Asia Long-term actions based on air quality conditions Impact of actions/policies on air quality

Clean Air Asia Impact of actions/policies on air quality Impact of actions/policies on air quality

Clean Air Asia Air quality forecast Forecasting (air quality & emissions)

Clean Air Asia Ability to integrate other emission data to air quality
Statistical analysis (diurnal/weekly profiles, source
identification)

Allin Wayra

Ingestion: unified acquisition and transmission
protocols; clear typologies by equipment type
(reference, LCS, satellite); security and backup of raw
data; ingestion from multiple sources in real time with
basic air quality index visualization; public availability
of data. Data ingestion (multi-source, real-time, protocols)

Allin Wayra
Storage: separation by typology, redundant backups
(local + cloud), and long-term preservation policies
with accessible costs.

Data backups / preservation / redundancy

Lead Organization Feature/Function Normalized Requirement

Allin Wayra
Sharing/visualization: free download (CSV/API) and
intuitive public platform with color-coded map and
basic indicators.

Data download

Allin Wayra
Sharing/visualization: free download (CSV/API) and
intuitive public platform with color-coded map and
basic indicators.

Dashboards/maps (real-time + historical)

Allin Wayra Hosting/implementation: hybrid local-cloud
architecture, open and modular. Hosting (on-premises, hybrid, modular)

Allin Wayra
Confidence ranking per data point and multi-level
QA/QC pre-processing; automatic anomaly filters.

QA/QC & anomaly detection

Allin Wayra
Storage of all data levels (raw, validated, aggregated)
in open-source, time-series-optimized databases.

Data storage (raw, validated, aggregated, time-series
optimized)

Allin Wayra

Quick statistical analyses (means, diurnal/weekly
profiles) and layered visualization integrating
meteorological, health, and satellite variables;
optimized loading/download times.

Statistical analysis (diurnal/weekly profiles, source
identification)

Allin Wayra Advanced API to automate bulk downloads and
forecasting services.

API for bulk download & integration

Allin Wayra
Machine learning applications for event detection and
predictions; customizable dashboards for different
audiences.

Machine learning predictions & event detection

Allin Wayra Automatic multilingual translation of the interface and
documentation.

Multilingual/localized interface

Allin Wayra
Open publication of standardized scripts/procedures
and historical performance metrics. Open publication of procedures/scripts/metrics

YGPE Storing historical and real-time data Data storage (raw, validated, aggregated, time-series
optimized)

YGPE Publicly accessible dashboards (with maps and
charts) Dashboards/maps (real-time + historical)

YGPE
Publicly accessible dashboards (with maps and
charts)

Data visualization (charts, maps, story maps,
narratives)

YGPE Language localization (Russian) Multilingual/localized interface

Lead Organization Feature/Function Normalized Requirement

YGPE
Tiered data access (from dashboard) by user account
and data type (RT vs historical) Tiered access by user/data type

YGPE Data downloads Data download

YGPE Standard data metric (such as AQI) Health messaging (e.g., AQI-based)

YGPE Easy installation and maintenance for hosting and
deployment Hosting (on-premises, hybrid, modular)

YGPE On-premises hosting (government end user
organizations) Hosting (on-premises, hybrid, modular)

YGPE Role based access controls Role-based access control
YGPE Data sharing Data sharing agreements / procedures
YGPE Long term sustainability Long-term sustainability

YGPE Local independence and data ownership by the end
user organization Local independence / end-user data ownership

SciCAN Data sovereignty Data sovereignty / ownership
SciCAN Data attribution Data attribution
SciCAN Data accessibility (timeliness) Data accessibility (timeliness)
SciCAN Data accessibility (timeliness) Data ingestion (multi-source, real-time, protocols)
SciCAN Data integrity (accuracy) Data integrity (accuracy)
SciCAN Data integrity (accuracy) QA/QC & anomaly detection

SciCAN PII can be protected (e.g., on maps) PII protection in data/maps
SciCAN Data visualization (e.g., maps) Dashboards/maps (real-time + historical)

SciCAN
Application to share story with data (e.g., story map,
community experience told with photos, videos,
narratives)

Data visualization (charts, maps, story maps,
narratives)

SciCAN
Alerts for high pollution that public can subscribe to
(texts, emails, calls) Real-time public alerts/notifications

SciCAN Real-time information to the public Real-time public alerts/notifications

SciCAN Compare data by week/season
Statistical analysis (diurnal/weekly profiles, source
identification)

SciCAN AQI based health messaging Health messaging (e.g., AQI-based)

Lead Organization Feature/Function Normalized Requirement

ECI Data intake from air quality monitoring
stations/instruments/devices Data ingestion (multi-source, real-time, protocols)

ECI Data intake for real-time and historical data Data ingestion (multi-source, real-time, protocols)

ECI Data sharing agreements for third-party owned data
sets Data sharing agreements / procedures

ECI Systems and procedures for data storage, processing
and quality control

Data storage (raw, validated, aggregated, time-series
optimized)

ECI Cost effective solution Cost-effective solution

ECI Systems and procedures for distribution and sharing
of data with users Data sharing agreements / procedures

ECI simpler, easy to understand and use formats Simpler/easier formats & use
ECI User friendly data display and reporting interface User-friendly interface (reporting)

ECI Interactive maps Data visualization (charts, maps, story maps,
narratives)

ECI Website and mobile application(s) Website and/or mobile applications
ECI Display real-time and historical data, trends Dashboards/maps (real-time + historical)

ECI Data and DMS ownership Data sovereignty / ownership
ECI Automated data screening Automated data screening

Appendix B – Alternative Technology Stack Options by Component

Alternative open-source technologies were evaluated for each layer to ensure flexibility and provide potential options for future iterations or
different deployment scenarios. The primary options were chosen to minimize operational overhead, maximize maintainability, and leverage a
cohesive stack. This approach allows the development team to use a consistent programming language and tooling across the pipeline,
database, API, and frontend, reducing complexity while retaining the ability to swap in alternative solutions if specific needs or scaling
requirements arise.

Layer / Category Primary Option Alternatives

Ingestion Python scripts/services Kafka, Apache NiFi, RabbitMQ

Validation / Standardization Pydantic + Python Frictionless, dbt

Quality Control Custom Python QC functions Great Expectations, Pandera, Deequ

Data Lake CSV Parquet, MinIO, Ceph, S3-compatible stores

Relational DB PostgreSQL + PostGIS TimescaleDB, SQLite

API FastAPI Flask, Django REST Framework

Frontend React + Next.js (TypeScript) Angular, Vue.js, Streamlit, Superset, Metabase

Packaging / Deploy Docker Compose Ansible, Kubernetes

	Clean Air COMPASS DMS – System Design Plan
	1.​Project Overview
	1.2 Stakeholder Priority Mapping

	2.​Requirements
	3.​System Architecture
	3.3 Mapping Stakeholder Priorities to Default Stack Components

	4.​Module Design
	5.​Risks & Mitigations
	6.​Next Steps
	Appendix A – Workshop Feedback Requirements Summary
	Appendix B – Alternative Technology Stack Options by Component

