Clean Air COMPASS DMS - System Design Plan

1. Project Overview

The Community of Practice for Air Quality Systems (COMPASS) is developing an open-source,
customizable data management system (DMS) for air quality measurement data (Table 1). The
COMPASS DMS is being developed to meet global needs for accessible, transparent, and collaborative
systems, emphasizing community-informed development and collective learning. By leveraging
open-source practices, Clean Air COMPASS seeks to accelerate and scale effective data management
worldwide, overcoming inefficiencies and redundancy in proprietary or ad-hoc systems.

Table 1. Summary of the project including website, description, stakeholders, assumptions
and key use cases.

“

Community of Practice for Air Quality Systems

Project N
roject Name Data Management System (COMPASS DMS)

Project Website https://cleanaircompass.org
Website to access system Coming soon
Project Description End-to-end platform to ingest, standardize, calibrate, quality-control,

store, and publish environmental observations with dashboards and admin
tools. The COMPASS DMS will be open-source and available to download,
modify, and self-host.

City/State/National Governments, non-profits and community-based

Stakeholders L o2 . e
organizations, non-governmental organizations, universities

Air quality program managers, measurements/monitoring personnel, data

Iiseneize] Lseis scientists, QA analysts, public data consumers, IT/Ops

Self-hosted by end-user organizations; Install-anywhere (single VM,
on-prem, or cloud VM); no proprietary/cloud-native dependencies; data
volume moderate to high (10°6-10"9 observations/year); users prefer
low-code/human-readable

Assumptions

Scheduled ingestion from sensors/APIs; schema validation; QC rules;
Use Cases normalization; time-series storage; REST access; dashboards; admin CRUD;
notifications; auditing and lineage

1.1 Development in Phases

COMPASS DMS will be developed in phases to deliver value early and grow over time. The initial
phase, represented by this plan, will focus on building the Minimum Viable Product (MVP). The MVP
will establish the core architecture and implement essential features required to demonstrate system
functionality, including data ingestion, standardization, storage, and a basic user interface for access
and visualization. As part of the MVP, we will focus on the basics: getting the data pipeline up and
running, making sure the data is standardized and stored properly, and giving users a simple interface to

explore their data and manage the system. The MVP will be an open-source COMPASS DMS and
source code that is freely available for end-user organizations to download, modify, and self-host. A
centralized system that is hosted and maintained by COMPASS may be offered in the future.

Later phases will expand on this foundation by adding more advanced features, such as richer
visualization tools, integrations with external systems, and automated notifications. Because the system
is open source, we also plan to open the door for community contributions in future phases. This will
allow developers and stakeholders outside the core COMPASS team to add new data connectors,
visualization modules, or other tools that meet local needs, helping the system evolve faster and stay
relevant to a wider set of users.

This phased approach will allow stakeholders to validate the MVP design, provide feedback, and

prioritize enhancements before subsequent phases expand functionality, integrate additional modules,
and improve scalability, performance, and user experience.

1.2 Stakeholder Workshops

This design plan was developed by analyzing priorities gathered during stakeholder workshops led by
core COMPASS organizations: Clean Air Asia, Allin Wayra, YGPE, SciCAN, and ECI. The highest-priority
requirements shaped the overall system architecture and selection of the technology stack. Key
priorities identified include:

e Data/system sovereignty for end user organizations (no requirements to share data though
some workshops identified public data distribution as critical)

e Long term sustainability including a cost-effective architecture and easy installation and
maintenance for capacity constrained organizations

e Real-time and historical data ingestion from disparate sources and types (files, API)

e Data harmonization with standardized protocols

e Data QA/QC, anomaly detection, and statistical analysis

e Data storage tiers: raw, validated, aggregated, time-series optimized

e Visualization: dashboards, maps, charts, narratives, multilingual interfaces, data downloads
e Decision/action guidance, forecasting, health messaging, and public alerts

e APIs for integration and bulk download

e Data attribution and sharing agreements

e User-friendly admin interfaces, role-based access control

e Hosting flexibility (on-premises, hybrid, modular)

e System/data backups and redundancy

The architecture outlined in this document for the MVP directly addresses these requirements by
ensuring reliable ingestion, robust QC, flexible storage, accessible APIs, multilingual and actionable
visualizations, and long-term sustainability.

1.2 Stakeholder Priority Mapping

Table 2 maps each stakeholder group to their top-priority requirements identified during the
workshops. This traceability ensures the design plan remains aligned with the needs of all parties. A
summary of all requirements identified during the workshops is provided in Appendix A.

Table 2. Summary of stakeholder priority requirements.

Stakeholder Top Priorities
Group

Clean Air Asia Decision/action guidance based on air quality; Multi-source, real-time data
ingestion; Statistical analysis (diurnal/weekly profiles, source ID); Visualization:
charts, maps, narratives; Data download & forecasting; Impact assessment of
policies/actions

Allin Wayra Multi-source, real-time data ingestion; Dashboards/maps (real-time + historical);
QA/QC & anomaly detection; Data storage (raw, validated, aggregated, time-series
optimized); API for bulk download & integration; Machine learning predictions &
event detection; Backups/preservation, modular hosting

YGPE Tiered data storage & access; Dashboards/maps (real-time + historical);
Visualization (charts, maps, narratives); Multilingual/localized interface; Health
messaging (e.g., AQl-based); Role-based access control, data sharing agreements;
Long-term sustainability, local ownership

SciCAN Data sovereignty & attribution; Multi-source, real-time data ingestion; Data integrity
& timeliness; QA/QC & anomaly detection; Dashboards/maps & visualization;
Real-time public alerts & health messaging; Pl protection in data/maps

ECI Multi-source, real-time data ingestion; Data storage (raw, validated, aggregated,
time-series optimized); Cost-effective solution; Simpler/easier formats &
user-friendly interface; Visualization & dashboards; Data sharing agreements &
sovereignty; Automated data screening, website/mobile apps

1.2 What is in this Document

This document provides a practical system design outline for an air quality DMS built entirely from
open-source, install-anywhere components.

2. Requirements

2.1 Functional Requirements

Table 3 summarizes the non-functional requirements of the system.

Table 3. Summary of priority functional requirements.

MVP Requirement Future Phase Expansion

Raw data ingest from file drops and
third-party API

Standardize data formats, naming
conventions, units, and time zones

Apply schema validation and QC
tests with human-readable specs

Quarantine failures with logging

Compute derived metrics (AQI)

Persist raw and curated data into a
data lake

Persist curated data as structured
observations in a database
(time-series optimized)

Expose REST API over database

Provide visualization interface

Multilingual/localized interface

Provide system admin functions

Track data lineage, logs

Support for CSV (1 format) and up
to three third-party API

Standardize to Air Quality Data
Exchange (AQDx) format for csv;
prioritizing criteria pollutants (not
VOC, meteorology)

Framework for QC tests; support
for basic QC tests (e.g., min/max
threshold); specific QC/calibration
routines for up to three sensors

Quarantine failures

Framework for AQI calculations;
Up to three custom calculations
(U.S. EPA AQI + two additional)

CSV files

Store processed data; calculate
aggregates

Core endpoints (query data, user,
and system information)

Basic dashboard with map, time
series, QC displays, data
downloads

Framework for supporting different
languages; up to 2 specific
languages in MVP (English + one
additional)*

Web based Ul for configuring
stations/sensors/parameters/users

Log basic qc results

Additional formats (CSV,
Excel, JSON, etc.) and
third-party API

Support for AQDx JSON
format; support for additional
standardization frameworks

Additional types of tests and
custom routines

Log failures and trigger alerts

Additional AQI or similar
calculations

Parquet, compression,
retention policies

Additional aggregates (e.g.,
rolling averages), retention
policies

Optimized queries for
advanced analyses and
visualizations

Customizable plots and
advanced displays; data QC
from the dashboard

Custom interfaces for
additional languages; custom
logos and branding

Additional CRUD for e.g.,
RBAC**, QC tests, system
configurations

Log manual data gc, user
access, notifications sent;
Access to logs via APl and
interface

MVP Requirement Future Phase Expansion

Notifications Email alerts for administrators Alerts by user-groups for qc
results, concentration
thresholds, Public sign-up for
notifications

Minimal-configuration setup for One OS optimized for MVP Support for additional OS
multiple operating systems

*Language support for the MVP will rely on translation tools and may be limited to certain typographic
conventions.

**RBAC = Role Based Access Control (specific permissions are assigned to specific users or user groups
such as read-only, data validator, system administrator, etc.)

2.2 Non-Functional Requirements
Table 4 summarizes the non-functional requirements of the system to be developed as part of future

phase expansion. These requirements may not be developed/evaluated unless a centralized COMPASS
DMS is offered.

Table 4. Summary of non-functional system requirements for future phases (not MVP).

Performance APl p50 <200 ms; p95 < 800 ms
Throughput 2 50k obs/min sustained
Availability 99.5% (single-node) / 99.9% (HA)
Security OIDC SSO, TLS in transit, RLS at DB
Scalability Scale vertically; shard by station/time
Maintainability Single-file Compose; pin images
Observability Metrics, logs, traces
Portability Runs on Linux/Windows

3. System Architecture

In addition to the functional and non-functional requirements, several additional criteria were used to
inform the design of the system architecture and selection of technology for each component. The
criteria include: 1) reliance on open-source technology/software only; 2) flexibility for future versions
(e.g., on-premises vs. cloud hosting, compatibility with diverse operating systems); and 3) simplicity,
prioritizing a cohesive technology stack built around a small number of programming languages and
frameworks.

3.1 High-Level Diagram

The DMS architecture (Figure 1) is designed to reliably manage and deliver environmental data in a
structured and reliable way. Incoming data sources may include files such as CSV or Excel files, JSON
feeds, and external APIs. These inputs flow into the data pipeline, which is responsible for acquisition,
standardization and harmonization of formats and units, quality assurance and quality control (QA/QC),
and data aggregation. Once processed, the data is stored in two layers: a file system for raw and
reference data, and a relational database for structured and query-ready data. From storage, the
system exposes data through an API, which provides controlled and consistent access for both internal
components and external users. On top of this, a user-facing front end offers visualization and analysis
tools, including interactive dashboards with maps, time series plots, statistical summaries, and options
for downloading datasets.

Iy\?es't Share

e_0

- O
Data Lake

Data Pipeline (parquet, csv) Visualization

Data Acquisition / (Dashboard, map
Sources > Standardize : N ’
(csv, APIs) QA/QC APl [—>| limeseries,
Agareqate statistical analysis,

9greg Database data download)

Figure 1. High-level diagram of system architecture.

3.2 Technology Stack

The system uses no cloud-native dependencies, ensuring maximum deployment flexibility (Table 5). It
will rely on a Python-based backend for data processing and API services (ETL, QA/QC), a PostgreSQL
database with PostCIS extensions for structured and spatial data, and a data lake for raw and processed
datasets in CSV format. A FastAPI service will expose the data and analytics through a documented
RESTful API. The user-facing application will be built with TypeScript using React and Next.js, providing
interactive dashboards, maps, and tools for data exploration and download. Containerization via
Docker Compose ensures portability.

This architecture leverages a modern, open-source technology stack. Together, these components
provide a robust foundation for scalable, transparent, and user-friendly environmental data
management and visualization. Alternative technology is further discussed in Appendix B.

Table 5. Summary of MVP technology by system component.

Technology

Ingestion Python scripts/services (scheduled jobs)

Validation/Standardization Python + Pandas + Pydantic (schema enforcement,
unit normalization)

Quality Control Python + custom QC rules (statistical/anomaly
detection, QA/QC flags)

Data Lake File system or object store with CSV

Relational DB PostgreSQL + PostGIS

API FastAPI (full REST layer, OpenAPI/Swagger docs)

Frontend (Dashboards, React + Next.js (TypeScript)

Maps, Admin)

Alerts SMTP via Python

Packaging/Deploy Docker Compose

3.3 Mapping Stakeholder Priorities to Default Stack Components
Table 6 links the stakeholder-identified priorities to the default open-source stack components chosen

for the system. It demonstrates how the architecture addresses stakeholder needs with concrete
technologies.

Table 6. Summary of MVP technology by system component.
Stakeholder Priority Mapped Component(s) Rationale
Flexible ingestion of files, APIs, or

streaming inputs with logging and
lineage tracking

Multi-source, real-time data Python ingestion services
ingestion (scheduled/async)

Schema validation, unit checks, and

Pandas + Pydantic + custom Python anomaly detection in a single Python

QA/QC & anomaly detection QOC routines

codebase
Data storage (raw, validated, CSV (raw + curated) + Clean separation of raw vs. structured
aggregated, time-series PostgreSQL/PostCIS (structured, data, with optimized queries for
optimized) indexed) analytics and spatial data

. L Interactive, modern web application
Visualization: dashboards, PP

- React + Next.js (TypeScript) with ri.c.h. mapping and visualization
capabilities
Decision/action guidance, React dashboards + FastAPI custom Threshold-based visuals, notifications,

health messaging, public alerts endpoints and integration-ready endpoints

Stakeholder Priority Mapped Component(s) Rationale

Data download & API Full-featured REST API with bulk

. : FastAPI download endpoints and Swagger
integration

docs
Role-based access control / Row-level security in Postgres with

Postgres RLS

tiered access optional identity management

Data sovereignty, attribution, Metadata tracking and chain of Transparent lineage, reproducible
ownership custody in the application schemas, traceability of data origin

Hosting flexibility
(on-premises, hybrid, Docker Compose
modular)

Portable, modular deployments across
environments

Automated backups and versioning for
pgBackRest + file versioning redundancy and long-term
sustainability

Backups, preservation,
sustainability

4. Module Design

The system is organized into modular components, each responsible for a specific set of functions
within the data pipeline, storage, API, and frontend layers. Table 7 summarizes each module’s purpose,
inputs, outputs, and key dependencies, providing a clear view of how data flows from acquisition to
user-facing applications. This modular design promotes maintainability, scalability, and flexibility,
enabling components to evolve independently as the system grows.

Table 7. Details (inputs, outputs, dependencies) for each MVP module.

Module Purpose Inputs Outputs Dependencies

Pulls data from sources on
Source
schedules; records

Raw files (CSV) in data

Ingestion Flow . URLs/paths, External APIs, file
provenance; writes raw S lake; provenance
(Python)) polling intervals, shares
CSV to data lake; triggers credentials metadata
validation/QC
Enforces schemas, field Dataset e p——
Validator . types, requm?d cpnstralnts; (CSV/JSON), (JSON), pass/fail el o (G
(Python/Pydantic) produces validation report; schema
s outcome
flags bad records definition
Applies statistical and
SE R (Gyilhen) threshold-based QC Validated QC'd dataset with flags Veldiar euipu
checks; annotates qc_flag dataset and metadata

and gc_detail fields

Module Purpose Inputs
Performs unit

Transformer normalization, timezone

(Python/Pandas) standardization, derived QC'd dataset

fields; writes CSV; inserts
into Postgres

Provides REST endpoints
(data retrieval, aggregation,
metadata, downloads);
includes OpenAPI docs

API Layer (FastAPI) HTTP requests

Delivers dashboards,
maps, time series, admin
console, and download
interface

Frontend (React +

Next.js) API endpoints

5. Risks & Mitigations

Outputs Dependencies

Curated files in data
lake; inserts to
Postgres/PostGIS

Postgres, data lake

JSON/CSV responses Postgres, data lake

Interactive web app
(visualizations, data
access)

FastAPI

The MVP system faces potential risks related to data quality, performance, reliability, and security (Table
8). The mitigation strategies listed in the table, ranging from schema validation and partitioning to
backups, access controls, and monitoring, ensure that these risks are managed proactively, helping
maintain data integrity, availability, and secure operation. In future versions of the system, risk
mitigation will be enhanced through both technical and operational improvements. For example,
schema validation and QC rules will evolve to cover additional data sources and edge cases, while
automated monitoring and alerting will be extended to detect anomalies more proactively.
High-availability and failover capabilities for PostgreSQL/PostGIS and the data lake will be implemented
to reduce downtime and read replicas or sharding strategies may be introduced to handle increased
analytical loads. Security controls, including role-based access, encryption, and audit logging, will be
continuously reviewed and updated to align with best practices. These ongoing improvements will
ensure that the system remains robust, scalable, and secure as data volumes and user requirements

grow.

Table 8. Details (inputs, outputs, dependencies) for each module.

Load failures or silent data
quality issues

Schema drift from partners

QC rule complexity False positives/negatives

Single-node failure Downtime/data loss

Storage/performance
degradation

Unbounded growth

Strict schema validation;
quarantine; partner contracts;
versioned schemas

Iterate with data docs; pilot
thresholds; per-parameter
overrides

Automated backups; consider
HA for Postgres (future phase)
Partitioning + retention; tiering;
aggregate rollups

Security misconfig Data exposure OIDC + RLS; regular audits;
secrets management; TLS
everywhere (future phase)

6. Next Steps

While this document establishes the high-level architecture and technology stack for the system,
several design elements will be developed in greater detail in future iterations of the design plan and
system documentation. These additions will ensure that the implementation is guided by precise
specifications and that the system is prepared for secure, scalable, and sustainable operation.

Additional design details will include the following:

e Entity-Relationship (ER) Model and Database Schema - A data model for PostgreSQL/PostGIS,
including entity relationships, indexing strategies, and geospatial structures.

e APl Design - API specification with documented endpoints, input/output formats,
authentication methods, and error handling conventions.

e Security Design - Access control strategy, role-based permissions, and data encryption
considerations.

e Deployment Architecture Topologies - Alternative deployment diagrams (e.g., on-premises,
hybrid, or cloud) with guidance on scaling, redundancy, monitoring, and backups.

e Test plan - Testing will be mult-tiered (e.g., unit tests, integration tests) and include engagement
with COMPASS organizations as beta testers.

These details will be fully documented in future iterations of this plan, providing the necessary technical
depth to guide development, integration, and operations across different hosting environments.

Appendix A - Workshop Feedback Requirements Summary

Lead Organization Feature/Function Normalized Requirement
oA Data explainers to ensure ease of understanding the
Clean Air Asia
numbers Clear decision/action guidance based on air quality
Clean Air Asia Ease of cpnsolldatlng air quality from various
sources/instruments Data ingestion (multi-source, real-time, protocols)
Clean Air Asia Identification of sources of air pollution .Statls_tlcal .ana|y5|s (diurnal/weekly profiles, source
identification)
oA Clear guidance on decisions/actions based on air
Clean Air Asia . L : : . .
quality Clear decision/action guidance based on air quality
Clean Air Asia Time series of the data Data visualization (charts, maps, story maps.
narratives)
Clean Air Asia Short-term actions based on air quality conditions Clear decision/action guidance based on air quality
Clean Air Asia Ability to integrate meteorological data to air quality .Statls_tlcal .ana|y5|s (diurnal/weekly profiles, source
identification)
Clean Air Asia Data download Data download
Clean Air Asia Long-term actions based on air quality conditions Impact of actions/policies on air quality
Clean Air Asia Impact of actions/policies on air quality Impact of actions/policies on air quality
Clean Air Asia Air quality forecast Forecasting (air quality & emissions)
Clean Air Asia Ability to integrate other emission data to air quality Statistical analysis (diurnal/weekly profiles, source
identification)
Ingestion: unified acquisition and transmission
protocols; clear typologies by equipment type
. (reference, LCS, satellite); security and backup of raw
Allin Wayra p ; . :))
data; ingestion from multiple sources in real time with
basic air quality index visualization; public availability
of data. Data ingestion (multi-source, real-time, protocols)
Storage: separation by typology, redundant backups
Allin Wayra (local + cloud), and long-term preservation policies Data backups / preservation / redundancy
with accessible costs.

Lead Organization

Feature/Function

Normalized Requirement

Sharing/visualization: free download (CSV/API) and

Allin Wayra intuitive public platform with color-coded map and Data download
basic indicators.
Sharing/visualization: free download (CSV/API) and
Allin Wayra intuitive public platform with color-coded map and Dashboards/maps (real-time + historical)
basic indicators.
. Hosting/implementation: hybrid local-cloud . . .
Allin Wayra architecture, open and modular. Hosting (on-premises, hybrid, modular)
: Confidence ranking per data point and multi-level .
Allin Wayra QA/QC pre-processing; automatic anomaly filters. QA/QC & anomaly detection
. Storage of all data levels (raw, validated, aggregated) Data storage (raw, validated, aggregated, time-series
Allin Wayra . : . - o
in open-source, time-series-optimized databases. optimized)
Quick statistical analyses (means, diurnal/weekly
, profiles) and layered visualization integrating Statistical analysis (diurnal/weekly profiles, source
Allin Wayra ; . . . ; e
meteorological, health, and satellite variables; identification)
optimized loading/download times.
Allin Wayra f\dvancgd APl to automate bulk downloads and API for bulk download & integration
orecasting services.
Machine learning applications for event detection and
Allin Wayra predictions; customizable dashboards for different Machine learning predictions & event detection
audiences.
Allin Wayra gxutomatlc multilingual translation of the interface and Multilingual/localized interface
ocumentation.
Allin Wayra Open.pub!lcatlon of standardlzegl scripts/procedures Open publication of procedures/scripts/metrics
and historical performance metrics.
YGPE Storing historical and real-time data Data storage (raw, validated, aggregated, time-series
optimized)
YCPE Publicly accessible dashboards (with maps and
charts) Dashboards/maps (real-time + historical)
YGPE Publicly accessible dashboards (with maps and Data visualization (charts, maps, story maps,
charts) narratives)
YGPE Language localization (Russian) Multilingual/localized interface

Lead Organization

Feature/Function

Normalized Requirement

Tiered data access (from dashboard) by user account

YGPE . .
and data type (RT vs historical) Tiered access by user/data type
YGPE Data downloads Data download
YCPE Standard data metric (SUCh as AQ') Hea|th messaging (e_g., AQ|_ba5ed)
YGPE Easy installation and maintenance for hosting and
deployment Hosting (on-premises, hybrid, modular)
YGPE On-premises hosting (government end user
organizations) Hosting (on-premises, hybrid, modular)
YGPE Role based access controls Role-based access control
YGPE Data sharing Data sharing agreements / procedures
YGPE Long term sustainability Long-term sustainability
Local independence and data ownership by the end
YGPE . . .
user organization Local independence / end-user data ownership
SciCAN Data sovereignty Data sovereignty / ownership
SciCAN Data attribution Data attribution
SciCAN Data accessibility (timeliness) Data accessibility (timeliness)
SciCAN Data accessibility (timeliness) Data ingestion (multi-source, real-time, protocols)
SciCAN Data integrity (accuracy) Data integrity (accuracy)
SciCAN Data integrity (accuracy) QA/QC & anomaly detection
SciCAN PIl can be protected (e.g., on maps) PIl protection in data/maps
SciCAN Data visualization (e.g., maps) Dashboards/maps (real-time + historical)
Application to share story with data (e.g., story map,
SciCAN community experience told with photos, videos, Data visualization (charts, maps, story maps,
narratives) narratives)
SCICAN Alerts for high pollution that public can subscribe to
(texts, emails, calls) Real-time public alerts/notifications
SciCAN Real-time information to the pUbllC Real-time pubhc a|ert5/n0tiﬂcations
SCICAN Compare data by week/season statlgtlcal analysis (diurnal/weekly profiles, source
identification)
SciCAN AQI based health messaging

Health messaging (e.g., AQI-based)

Lead Organization

Feature/Function

Normalized Requirement

Data intake from air quality monitoring

ECI stations/instruments/devices Data ingestion (multi-source, real-time, protocols)

ECI Data intake for real-time and historical data Data ingestion (multi_source' rea|_time, protoco|s)
Data sharing agreements for third-party owned data

ECI .
sets Data sharing agreements / procedures

ECI Systems and procedures for data storage, processing | Data storage (raw, validated, aggregated, time-series
and quality control optimized)

ECI Cost effective solution Cost-effective solution
Systems and procedures for distribution and sharing

ECI . .
of data with users Data sharing agreements / procedures

ECI simpler, easy to understand and use formats Simpler/easier formats & use

ECI User friendly data display and reporting interface User-friendly interface (reporting)

ECI Interactive maps Data \{lsuallzatlon (charts, maps, story maps,

narratives)

ECI Website and mobile application(s) Website and/or mobile applications

ECI Display real-time and historical data, trends Dashboards/maps (real-time + historical)

ECI Data and DMS ownership Data sovereignty / ownership

ECI Automated data screening Automated data screening

Appendix B - Alternative Technology Stack Options by Component

Alternative open-source technologies were evaluated for each layer to ensure flexibility and provide potential options for future iterations or
different deployment scenarios. The primary options were chosen to minimize operational overhead, maximize maintainability, and leverage a
cohesive stack. This approach allows the development team to use a consistent programming language and tooling across the pipeline,
database, API, and frontend, reducing complexity while retaining the ability to swap in alternative solutions if specific needs or scaling
requirements arise.

Layer / Category Primary Option Alternatives

Ingestion Python scripts/services Kafka, Apache NiFi, RabbitMQ

Validation / Standardization | Pydantic + Python Frictionless, dbt

Quality Control Custom Python QC functions | Great Expectations, Pandera, Deequ

Data Lake Csv Parquet, MinlO, Ceph, S3-compatible stores
Relational DB PostgreSQL + PostGIS TimescaleDB, SQLite

API FastAPI Flask, Django REST Framework

Frontend React + Next.js (TypeScript) Angular, Vue js, Streamlit, Superset, Metabase
Packaging / Deploy Docker Compose Ansible, Kubernetes

	Clean Air COMPASS DMS – System Design Plan
	1.​Project Overview
	1.2 Stakeholder Priority Mapping

	2.​Requirements
	3.​System Architecture
	3.3 Mapping Stakeholder Priorities to Default Stack Components

	4.​Module Design
	5.​Risks & Mitigations
	6.​Next Steps
	Appendix A – Workshop Feedback Requirements Summary
	Appendix B – Alternative Technology Stack Options by Component

